Associative Property of Addition

Changing the grouping of addends does not change their sum

a + (b + c) = (a + b) + c

2 + (3 + 5) = (2 + 3) + 5

Associative Property of Multiplication

Changing the grouping of factors does not change their product

 $a \times (b \times c) = (a \times b) \times c$

 $2 \times (3 \times 4) = (2 \times 3) \times 4$

Commutative Property of Addition

Changing the order of addends does not change their sum

$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{c}$

1 + 2 = 2 + 1

Commutative Property of Multiplication

Changing the order of factors does not change their product

$a \times b = b \times a$

 $2 \times 3 = 3 \times 2$

Distributive Property The product of a factor and a sum equals the sum of the products. $a \times (b + c) = (a \times b) + (a \times c)$ $2 \times (3 + 5) = (2 \times 3) + (2 \times 5)$ 2 X 6 + 10 — 16 =16

Identity Property of Addition

The sum of any number and 0 is that number.

19 + 0 = 19

Subtraction Rules of Zero The difference of any number and zero is that number. $d - 0 = d^2 - 24 - 0 = 24$ The difference of any number and itself is zero. d - d = 0 24 - 24 = 0

Identity Property of Multiplication Also called the "Property of One": The product of any number

and 1 is that number.

 $a \times 1 = a$

 $9 \times 1 = 9$

Zero Property of Multiplication The product of any number and zero is zero. $a \mathbf{X} \mathbf{0} = \mathbf{0}$

 $10 \times 0 = 0$

Addition Property of Equality

Adding the same number to both sides of an equation results in a new equation, having the same solution(s) as the original.

$$a - 2 = 5$$

 $a - 2 + 2 = 5 + 2$
 $a = 7$
 $\sqrt{7} - 2 = 5$

Multiplication Property of Equality

Multiplying both sides of an equation by the same nonzero number results in a new equation, having the same solution(s) as the original.

$$c \div 2 = 5$$

$$c \div 2 \times 2 = 5 \times 2$$

$$c = 10$$

$$\checkmark 10 \div 2 = 5$$

Division Property of Equality

 $d \times 2 = 18$

d = 9

 $2 \div 2 = 18 \div 2$

 $9 \times 2 = 18$

Dividing both sides of an equation by the same nonzero number results in a new equation, having the same solution(s) as the original.

3n = 15	$\frac{3n}{3}$ =	= <mark>15</mark> - 3	n = 5	√ 3•5 = 15
	U	U		

Subtraction Property of Equality

Subtracting both sides of an equation by the same number results in a new equation, having the same solution(s) as the original.

b+2=5 b+2-2=5-2 b=3 $\sqrt{3}+2=5$

Additive Inverse of Integers

The **additive inverse** of an integer is its opposite. An integer and its additive inverse have the same **absolute value**:

The sum of an integer and its additive inverse is always zero. -3 and +3

-3 + +3 = 0

Rule for Addition of Integers The sum of a positive integer and a negative integer will have the same sign as the integer with the greater absolute value.

+10 + -8 = +2 +9 + -11 = -2

Rule for Subtraction of Integers

Subtracting an integer is the same as adding its opposite.

-7 - -10 = -7 + +10 -8 - +3 = -8 + -3

+4 - -5 = +4 + +5