Assaciditive Property of Ahdition

Changing the grouping of addends does not change their sum

$$
\begin{aligned}
& a+(b+c)=(a+b)+c \\
& 2+(3+5)=(2+3)+5
\end{aligned}
$$

Changing the grouping of factors does not change their product

$$
\begin{aligned}
& a \times(b \times c)=(a \times b) \times c \\
& 2 \times(3 \times 4)=(2 \times 3) \times 4
\end{aligned}
$$

Changing the order of addends does not change their sum

$$
a+b=b+c
$$

$$
1+2=2+1
$$

Changing the order of factors does not change their product
$\mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$
$2 \times 3=3 \times 2$

Distributive Property

The product of a factor and a sum equals the sum of the products.

$$
\begin{aligned}
\mathrm{a} \times(\mathrm{b}+\mathrm{c}) & =(\mathrm{a} \times \mathrm{b})+(\mathrm{a} \times \mathrm{c}) \\
2 \times(3+5) & =(2 \times 3)+(2 \times 5) \\
2 \times 8 & =6+10 \\
16 & =16
\end{aligned}
$$

Identity Properity of Addation

The sum of any number and 0 is that number.
$a+0=a$
$19+0=19$

The difference of any number and zero is that number.

$$
d-0=d=24-0=24
$$

The difference of any number and itself is zero.
$d-d=0 \quad 24-24=0$

Also called the "Property of One": The product of any number and 1 is that number.

$$
\begin{aligned}
& a \times 1=a \\
& 9 \times 1=9
\end{aligned}
$$

The product of any number and zero is zero.

$$
a \times 0=0
$$

$$
10 \times 0=0
$$

Addition

 Property of Equality

 Property of Equality}

Adding the same number to both sides of an equation results in a new equation, having the same solution(s) as the original.

$$
\begin{gathered}
a-2=5 \\
a-2+2=5+2 \\
a=7 \\
\sqrt[7]{7}-2=5
\end{gathered}
$$

Multiplying both sides of an equation by the same nonzero number results in a new equation, having the same solution(s) as the original.

$$
\begin{gathered}
c \div 2=5 \\
c \div 2 \times 2=5 \times 2 \\
c=10 \\
\checkmark \quad 10 \div 2=5
\end{gathered}
$$

Division Property of Equality

Dividing both sides of an equation by the same nonzero number results in a new equation, having the same solution(s) as the original.

$$
3 n=15 \quad \frac{3 n}{3}=\frac{15}{3} \quad n=5 \quad \sqrt{ } \quad 3 \cdot 5=15
$$

Subtracition Property of Equality

Subtracting both sides

$$
b+2=5
$$

$$
\begin{aligned}
& \text { of an equation by the } \\
& \text { same number results in } b+2-2=5-2
\end{aligned}
$$

a new equation, having the same solution(s) as the original.

Adolitive Inverse of Inteyers

The additive inverse of an integer is its opposite. An integer and its additive inverse have the same absolute value:

The sum of an integer and its additive inverse is always zero.
-3 and +3
$-3++3=0$

Rule for Adolition of Integerers

 The sum of a positive integer and a negative integer will have the same sign as the integer with the greater absolute value.$+10+-8=+2 \quad+9+-11=-2$

Rule for Subtraction of Integers

Subtracting an integer is the same as adding its opposite.

$$
-7-10=-7++10
$$

$$
-8-+3=-8+-3
$$

$$
+4--5=+4++5
$$

